当前位置:首页 » 广州讯息 » 广州机电bga贴片市场怎么样
扩展阅读
杭州七七动漫店怎么样 2025-01-19 23:11:46
上海商超配送如何收费 2025-01-19 23:05:38
杭州哪里坐飞机人多 2025-01-19 23:04:45

广州机电bga贴片市场怎么样

发布时间: 2022-08-09 08:21:10

㈠ SMT贴片机程序原理是怎么样的,知道通知我哦

SMT贴片机工作原理介绍
表面贴装技术(Surface mountingTechnology,简称SMT)由于其组装密度高及良好的自动化生产性而得到高速发展并在电路组装生产中被广泛应用。SMT是第四代电子装联技术,其优点是元器件安装密度高,易于实现自动化和提高生产效率,降低成本。SMT生产线由丝网印刷、贴装元件及再流焊三个过程构成,如图1所示。其中SMC/SMD(surfacemount component/Surface mountdevice,片式电子元件/器件)的贴装是整个表面贴装工艺的重要组成部分,它所涉及到的问题较其它工序更复杂,难度更大,同时片式电子元件贴装设备在整个设备投资中也最大。

目前随着电子产品向便携式、小型化方向发展,相应的SMC/SMD也向小型化发展,但同时为满足IC芯片多功能的要求,而采用了多引线和细间距。小型化指的是贴装元件的外形尺寸小型化,它所经历的进程:3225→3216→2520→2125→1608→1003→1603→0402→0201。贴装QFP的引脚间距从1.27→0.635→0.5→0.4→0.3mm将向更细间距发展,但由于受元件引线框架加工速度的限制,QFP间距极限为0.3mm,因此为了满足高密度封装的需求,出现了比QFP性能优越的BGA(Ball Grid Array)、CSP(Chip SizePackage)、COB(Chip On Board)裸芯片及Flip Chip。
片式电子元件贴装设备(通称贴片机)作为电子产业的关键设备之一,采用全自动贴片技术,能有效提高生产效率,降低制造成本。随着电子元件日益小型化以及电子器件多引脚、细间距的趋势,对贴片机的精度与速度要求越来越高,但精度与速度是需要折衷考虑的,一般高速贴片机的高速往往是以牺牲精度为代价的。
2 贴片机的工作原理
贴片机实际上是一种精密的工业机器人,是机-电-光以及计算机控制技术的综合体。它通过吸取-位移-定位-放置等功能,在不损伤元件和印制电路板的情况下,实现了将SMC/SMD元件快速而准确地贴装到PCB板所指定的焊盘位置上。元件的对中有机械对中、激光对中、视觉对中3种方式。贴片机由机架、x-y运动机构(滚珠丝杆、直线导轨、驱动电机)、贴装头、元器件供料器、PCB承载机构、器件对中检测装置、计算机控制系统组成,整机的运动主要由x-y运动机构来实现,通过滚珠丝杆传递动力、由滚动直线导轨运动副实现定向的运动,这样的传动形式不仅其自身的运动阻力小、结构紧凑,而且较高的运动精度有力地保证了各元件的贴装位置精度。
贴片机在重要部件如贴装主轴、动/静镜头、吸嘴座、送料器上进行了Mark标识。机器视觉能自动求出这些Mark中心系统坐标,建立贴片机系统坐标系和PCB、贴装元件坐标系之间的转换关系,计算得出贴片机的运动精确坐标;贴装头根据导入的贴装元件的封装类型、元件编号等参数到相应的位置抓取吸嘴、吸取元件;静镜头依照视觉处理程序对吸取元件进行检测、识别与对中;对中完成后贴装头将元件贴装到PCB上预定的位置。这一系列元件识别、对中、检测和贴装的动作都是工控机根据相应指令获取相关的数据后指令控制系统自动完成。贴片机的工作流程框图如图2所示。

3 贴片机的结构形式
按照贴装头系统与PCB板运载系统以及送料系统的运动情况,贴片机大致可分为3种类型:转塔式(turret-style)(如图3)、模块型(parallel-style)(如图4)和框架式(gantry-style)。而框架式贴片机又根据贴装头在框架上的布置情况可以细分为动臂式(如图5)、垂直旋转式(如图6)、平行旋转式(如图7)。

转塔式贴片机也称为射片机,以高速为特征,它的基本工作原理为:搭载送料器的平台在贴片机左右方向不断移动,将装有待吸取元件的送料器移动到吸取位置。PCB沿x-y方向运行,使PCB精确地定位于规定的贴片位置,而贴片机核心的转塔在多点处携带着元件,在运动过程中实施视觉检测,并进行旋转校正。转塔式贴片机中的转塔技术是日本SANYO公司的专利,目前将此技术运用得比较成功的有Panasert公司的转塔式贴片机系列(最早推出的是MK系列,然后发展到MV系列,现在主推机型是MSR系列),FUJI公司的CP系列(现在最新的是CP7系列)。
框架型贴片机的送料器和PCB是固定不动的,它通过移动安装于x-y运动框架中的贴装头(一般是装在x轴横梁上),进行吸取和贴片动作。此结构的贴装精度取决于定位轴x、y和θ的精度。
尽管都采用了框架型结构,但由于贴装头的不同形式,可以将这种款式的贴片机分成3种,一种是Samsung、YAMAHA、Mirea等厂商主推的动臂式,还有一种是SiemensDematic主推的垂直旋转式,第三种是SONY主推的平行旋转式。
框架型贴片机可以采用增加横梁/悬臂(也是增加贴装头)的方式达到增加贴装速度的目的。这种结构贴片机的基本原理是当一个贴装头在吸取元件时,另外一个贴装头去贴装元件。
模块型贴片机可以看成是由很多个小框架型贴片机并联组合在一起而形成的一台组合式贴片机。目前世界上只有Assembleon(原来是PHILIPS)公司的FCM机型和FUJI公司新推出的NXT机型用到了此种技术。
模块型贴片机使用一系列小的单独的贴装单元。每个单元有自己独立的x-y一z运动系统,安装有独立的贴装头和元件对中系统。每个贴装头可从有限的带式送料器上吸取元件,贴装PCB的一部分,PCB以固定的间隔时间在机器内步步推进。每个独立单元往往只有一个吸嘴,这样每个贴装单元的贴装速度就比较慢,但是将所有的贴装单元加起来,可以达到极高的产量。
下面对这几种类型贴片机的性能进行综合比较,见表1。

(1)贴装速度
速度一直是转塔型贴片机的优势,但随着技术的发展,新型贴片机的不断推出,框架型贴片机和模块型贴片机有几种新机型的贴装速度已经超越了新型的转塔型贴片机。这从不同类型贴片机的性能参数表中可以看出。

(2)贴装精度
随着微型元件和密间距元件的广泛应用,现在的电子产品在贴装精度方面对贴片机提出了更高的要求。几年以前,行业内可接受的精度标准还是0.1mm(chip元件)和0.05 mm(IC元件)。目前这个标准已经有缩减到0.05 mm(chip元件)和0.025mm(IC元件)的趋势。
目前的转塔型贴片机已经很难超越0.05mm的精度等级,最好的转塔型贴片机也只能刚好达到这个精度。而最先进的框架型贴装系统可以达到4σ、25μm的精度。而达到此能力的机器贴装速度都不太高。

(3)可贴装元件范围

转塔型贴片机受送料方式影响,只能贴装带式包装或散料包装的元件,而管料和盘料就无法进行贴装,即使它的视觉系统可以处理这些元件。密间距的元件一般都是采用盘料包装形式,因此转塔型贴片机在这项指标上是最弱的。而且受机械结构的限制,基本少有改进的余地。

4 贴片机x一y运动机构
x-y运动机构的功能是驱动贴装头在x轴和y轴两个方向做往复运动,使贴装头能够快速、准确、平稳地到达指定位置。
目前贴片机上的x-y运动机构有几种不同的构成方式,分别是由滚珠丝杠+直线导轨传动的伺服电机驱动方式;由同步齿形带+直线导轨传动的伺服电机驱动方式;直线电机驱动方式。
这几种驱动方式在结构上都是类似的,都需要直线导轨做导向,只是在传动方式存在差异。
下面主要介绍由滚珠丝杠+直线导轨传动的伺服电机驱动方式。
图8所示为一个基本的贴片机x-y运动机构,x轴伺服电机利用安装于横梁上的滚珠丝杠和直线导轨驱动贴装头在x轴方向运动,y轴伺服电机利用安装于机架上的滚珠丝杠和直线导轨驱动整个横梁在y轴方向运动。这两个运动结合在一起就形成了一个驱动贴装头在x-y平面内高速运动的x-y运动机构。
在y轴方向,由于要驱动一个有一定长度的横梁,必然要把横梁的两端安装到固定的直线导轨上,两根导轨之间有一定的跨度,而电机及传动滚珠丝杠不可能安装于两根导轨的正中间位置,只能安装于靠近一侧导轨的内侧。这样,当贴装头的重量和横梁的跨度达到一个较大的值时,贴装头在远离电机一端的导轨近处的移动会在y轴滚珠丝杠与横梁的结合处产生一个很难平衡的角摆力矩,y轴的加减速和定位性能会受到较大的影响。为减轻此不利因素,现在很多贴片机在y轴采用了双电机驱动模式,如图9所示。

采用双电机驱动模式,两个电机同步协调驱动横梁移动,提高了定位稳定性,减少了定位时间,从而提高了y轴的速度和精度。
为了在单台贴片机上达到更高的贴片速度,现在的高速贴片机都采用了双横梁/双贴装头的技术,如图10、图11所示。

图10是YAMAHA开发的框架式机型,x横梁系统沿y向运动,x横梁两侧分别装有两贴装头。每个贴装头能分别从x横梁两侧的取料站拾取元件并贴装。而PCB板可以在x、y平面内移动。
图11是YAMAHA图10机型的改进型,它采用了双X横梁双贴装头结构。这种结构的贴片机在送板机构两侧有2个x横梁与双贴装头系统,同时两侧都有取料站与贴装区,两侧的系统都能完成各自的取料与贴装。
贴片机对速度和精度的要求很高。1个贴装循环(就是贴片机完成1次取料贴片动作),包含贴装主轴吸取元件的时间、移动到静镜头的时间、静镜头摄像的时间、移动到贴装位置的时间、校正元件偏移的时间、贴装主轴贴装元件的时间,这所有时间的总和要达到1~2s。当贴片机每个贴装头上的吸嘴数目较少(3个以下)时,x-y运动机构驱动贴装头移动时间的长短就成了影响贴装速度的关键因素。为了达到高速贴装的要求,x,y向要以1.25m/s或更高的速度运动,还要有较大的加、减速度(1g~2g),提速与制动的时间要尽量短。这样贴片机就不可能像数控机床那样把运动部件做得非常坚固、笨重,而要像小轿车、飞机那样尽可能的减轻高速运动部件的质量和惯量,达到足够的运动定位精度和尽可能高的加、减速性能,在这2者之中优选,实现最佳惯量匹配。
5 国内外贴片机性能研究
国外的贴片机研制技术一直走在前列,如日本的松下、雅马哈、富士,韩国的三星,德国的西门子,美国的环球,荷兰的飞利浦等都已开发出非常成熟的产品系列[3]。
美国乔治亚州理工学院的D.A.Bodner,M.Damrau等利用VirtualNC仿真工具,以电子贴装设备Siemens80S20为原型机,建立了相应的数字化样机模型,如图12所示。以贴装系统、送板机构、送料系统三大核心组件为基础,对整机性能进行了较为详尽的研究,分析了影响贴装速度的因素以及怎样取得最少的贴装周期时间。

德国埃尔兰根大学的Feldmann与Christoph基于多体仿真的思想,集成多体动力学仿真软件、有限元分析软件、控制仿真工具,建立一个综合性的多体仿真分析平台,如图13所示。以两门子SiplaceF4贴片机为原型机,建立了贴片机的多体仿真数字化样机模型,对贴片机运动物体特性、挠性、振动特性以及热变形等进行了研究。其中重点介绍了在柔性体上建立线性约束的方法,并利用ADAMS/ENGINE模块中的"TimingMechanism"建立了电机驱动齿形带的仿真模型。

英国诺丁汉大学的MasriAyob博士从改善取片--贴片操作、增强运动控制、吸嘴选择和送料器装配等方面入手,研究了多头顺序式贴片机的优化问题。
贴片机曾是我国"七五"、"八五"、"九五"、"十五"计划中电子装备类别的重点发展项目之一。20多年来,国内一些研究所、大学、工厂开展了SMT生产线中各种设备(指丝印、贴片、焊接等设备)的研制工作。
从1978年我国引进第一条彩电生产线开始,电子部二所就开始了贴片机的研发工作,以后有电子部56所、电子部4506厂、航天部二院、广州机床研究所等科研院所分别进行了研制,并取得了大量科研成果。虽然这些研究成果没有实现产业化,但为后来者积累了宝贵的经验。
国内现有或进行过贴片机研发、生产的企业有:羊城科技、熊猫电子、风华高科、上海现代、上海微电子、深圳日东等。羊城科技从贴片机的低端市场出发,面向围内中小电子企业、科研院所等单位,自主研发,成功研制出SMT2505贴片机,并与西安交通大学、中南大学等展开合作,在自主研发产品基础上,采用数字化样机研究于段,进行了针对贴片机性能的系统研究,取得了一定成效。不过与国外机型相比还存在一定差距,而且因资金问题,产品尚未进入批量生产阶段。其它的研究企业也进行了贴片机的研制,完成各自的研制课题和样机,取得了一定的成果。由于贴片机的技术含量高,研发周期较长,投入大,因此大部分中小企业对贴片机的研发工作仍停留在样机阶段,无法将产品应用到生产线上去。
国内大专院校对贴片机的研究工作也一直末停止过,例如西安电子科技大学的闫红超、姜建国等采用改进混合遗传算法进行了贴片机装配工艺优化的研究;两安交通大学的李蕾、杜春华等对贴片机视觉检测算法进行了研究;西南交通大学的杨帆研究了SMT贴片机的定位运动控制;龙绪明对贴片机视觉系统进行了综述;山东大学的刘锦波基于视觉研究了楔型贴片机运动控制系统;上海交通大学机械与动力工程学院的莫锦秋、程志国、浦晓峰等研究了贴片机的控制系统,CIM研究所的曾又铰、金烨研究了贴片机的贴装优化问题,微电子装备研究所的于新瑞、王石刚、刘绍军研究了贴片机系统的图像处理技术问题,自动化研究所的田福厚、李少远等进行了贴片机喂料器分配的优化及其遗传算法研究;华中科技大学的汪宏升、史铁林等从视觉与图像方面进行了贴片机的相关研究;华南理工大学与风华高科合作,从视觉检测、图像处理、运动控制系统、效率优化等方面展开了相关研究。
6 结论
根据贴装元器件的不同以及贴装的通用程度不同,贴片机可分为专用型与泛用型,专用型有Chip专用型与IC专用型,前者主要追求高速,后者主要追求高精密;泛用型即可贴Chip也可贴IC,广泛应用于中等产量的连续生产贴装生产线中。通用贴片机的高适应性是牺牲了精度和速度的折衷设计,它的贴装速度比高速贴装机慢,贴装精度比精密贴装机低。高速贴片机的发展已经达到一定极限程度,目前贴片机制造厂商主要发展泛用机型,以适应更多的贴装工艺需求。由于后封装和贴片工艺已经开始相互融合,这对贴片机的精度又提出了更高的要求。
同时具有高速和高精度的要求是贴片机研制的主要难点。解决高速和高精度的矛盾需要多个学科的完美结合,需要设计、模拟、工艺、装配、检验的有机联合,这样才能研制出高水平的贴片机。但由于贴片机的制造十分依赖基础工业发展,这也较大阻碍了高速高精度贴片机的开发。

㈡ 现在市场smt贴片电阻手工焊多少钱一个点,自己出锡线

目前市场上,焊点单价各有不同,从0.008~0.03元/焊点的价钱都有,这个取决于以下条件:
1.单价按工艺:
A 锡膏有铅SMT贴片加工价格相对便宜。
B 锡膏无铅SMT贴片加工 成本相对偏高。
C 红胶环保SMT贴片加工 成本相对较低。
D 锡膏红胶双工艺SMT贴片加工 成本高,工艺相对较麻烦。
2.按订单的数量:
A 常见的SMT贴片打样加工3-20片,会收取工程费,不会按点数乘以单价计算,部分公司会设置最低消费标准;
B 小批量SMT贴片加工生产1000片以下,会收开机费+点数乘以单价计算;
C 批量SMT贴片加工,按算点数乘以单价计算;
3.按板子的难易程度
A 单又面分 单面SMT贴片加工的相对较快,双面SMT贴片加工的需要转两次线,成本较高。
B 精密度分 较精密的SMT贴片加工。如有BGA高密度的IC.板子用的锡膏会贵。
C 贴片元件的密度分 相同大小的PCB板里的点数多。效率会高,因为贴片机工作时坐标的行程较短,SMT片加工就会越快。
4.开机费:小批量SMT贴片加工的订单在按点数计算后,会看板子元件的种类, 调试贴片机的时间,做首件的难度不同加收400~2000元不等的开机费。
5.打样费:SMT贴片加工订单一款在100片以内的为SMT贴片打样订单,板子的难易程度,做程序的时间,上机转线的时间不同,收取800元到3000元不等的工程费。
6.钢网费:根据PCB板的大小,开不同型号的钢网。根据PCBA板上芯片的精密度,选择开电抛光钢网或普通钢网。不同的钢网型号类别钢网费用不同。

㈢ 为什么74HC244的贴片封装要做成宽、窄两种,宽的那种浪费空间,有什么好处

一般封装都有各自的优点,有的是便于安装,有的是适用于高频。
有的是成本比较低。
所以选择自己需要的行可以了。现在DIP封装的也有好多呢,各有各的好处吧。

一、DIP双列直插式封装
DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。
DIP封装具有以下特点:
1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。
2.芯片面积与封装面积之间的比值较大,故体积也较大。
Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。
二、PQFP塑料方型扁平式封装和PFP塑料扁平组件式封装
PQFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。
PFP(Plastic Flat Package)方式封装的芯片与PQFP方式基本相同。唯一的区别是PQFP一般为正方形,而PFP既可以是正方形,也可以是长方形。
PQFP/PFP封装具有以下特点:
1.适用于SMD表面安装技术在PCB电路板上安装布线。
2.适合高频使用。
3.操作方便,可靠性高。
4.芯片面积与封装面积之间的比值较小。
Intel系列CPU中80286、80386和某些486主板采用这种封装形式。
三、PGA插针网格阵列封装
PGA(Pin Grid Array Package)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。
ZIF(Zero Insertion Force Socket)是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。
PGA封装具有以下特点:
1.插拔操作更方便,可靠性高。
2.可适应更高的频率。
Intel系列CPU中,80486和Pentium、Pentium Pro均采用这种封装形式。
四、BGA球栅阵列封装
随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA(Ball Grid Array Package)封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。
BGA封装技术又可详分为五大类:
1.PBGA(Plasric BGA)基板:一般为2-4层有机材料构成的多层板。Intel系列CPU中,Pentium II、III、IV处理器均采用这种封装形式。
2.CBGA(CeramicBGA)基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片(FlipChip,简称FC)的安装方式。Intel系列CPU中,Pentium I、II、Pentium Pro处理器均采用过这种封装形式。
3.FCBGA(FilpChipBGA)基板:硬质多层基板。
4.TBGA(TapeBGA)基板:基板为带状软质的1-2层PCB电路板。
5.CDPBGA(Carity Down PBGA)基板:指封装中央有方型低陷的芯片区(又称空腔区)。
BGA封装具有以下特点:
1.I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。
2.虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。
3.信号传输延迟小,适应频率大大提高。
4.组装可用共面焊接,可靠性大大提高。
BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,***西铁城(Citizen)公司开始着手研制塑封球栅面阵列封装的芯片(即BGA)。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组(如i850)中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。目前,BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。
五、CSP芯片尺寸封装
随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP(Chip Size Package)。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒(Die)大不超过1.4倍。
CSP封装又可分为四类:
1.Lead Frame Type(传统导线架形式),代表厂商有富士通、日立、Rohm、高士达(Goldstar)等等。
2.Rigid Interposer Type(硬质内插板型),代表厂商有摩托罗拉、索尼、东芝、松下等等。
3.Flexible Interposer Type(软质内插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC。
4.Wafer Level Package(晶圆尺寸封装):有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。
CSP封装具有以下特点:
1.满足了芯片I/O引脚不断增加的需要。
2.芯片面积与封装面积之间的比值很小。
3.极大地缩短延迟时间。
CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电(IA)、数字电视(DTV)、电子书(E-Book)、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝芽(Bluetooth)等新兴产品中。
六、MCM多芯片模块
为解决单一芯片集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上用SMD技术组成多种多样的电子模块系统,从而出现MCM(Multi Chip Model)多芯片模块系统。
MCM具有以下特点:
1.封装延迟时间缩小,易于实现模块高速化。
2.缩小整机/模块的封装尺寸和重量。
3.系统可靠性大大提高。

㈣ bga焊接 和贴片 一样价格吗

贴片单价按点收费 焊接单价按个收费 如果是一起贴片全部按点收费!

㈤ 制作SMT贴片钢网,化学蚀刻和电蚀刻那种好市场上制作SMT贴片钢网都采用那种

电蚀刻的要好。不过成本比化学蚀刻的要高。一般简单的板子用化学蚀刻。如果是有bga,qfp的板子,最好用电蚀刻或者激光蚀刻。

㈥ 我是江苏的,有一块电路板要抄板,做样机,是块游戏主板,贴片的元件是0402的,有十个BGA。{RanStrAndNum}

那个最好用机贴了,手工费时费事质量还不一定好,我是成都的,完全可以帮你做,包括抄板,出样品,我们走的性价比

㈦ 为什么BGA芯片买回来,有的已经植过球了,有的没有植球正常贴片机贴BGA芯片需要植球吗

肯定是需要直球的呀,如果没有直球的话就需要你自己直球。最好 是买直球好的芯片,这样成活率高很多

㈧ 如何实现BGA的良好回流焊焊接

随着电子技术的发展,电子元件朝着小型化和高密集成化的方向发展。BGA元件已越来越广泛地应用到SMT装配技中来,并且随着u BGA和CSP的出现,SMT装配的难度是愈来愈大,工艺要求也愈来愈高。由于BGA的返修的难度颇大,故实现BGA的良好焊接是放在所有SMT工程人员的一个课题。这里广晟德回流焊就BGA的保存和使用环境以及焊接工艺等两大方面同大家讨论。
BGA的保存及使用
BGA元件是一种高度的温度敏感元件,所以BGA必须在恒温干燥的条件下保存,操作人员应该严格遵守操作工艺流程,避免元器件在装配前受到影响。一般来说,BGA的较理想的保存环境为20℃-25℃,湿度小于10%RH(有氮气保护更佳)。 ℃
大多数情况下,我们在元器件的包装未打开前会注意到BGA的防潮处理,同时我们也应该注意到元器件包装被打后用于安装和焊接的过程中不可以暴露的时间,以防止元器件受到影响而导致焊接质量的下降或元器件的电气性能的改变。下表为湿度敏感的等级分类,它显示了在装配过程中,一旦密封防潮包装被开,元器件必须被用于安装,焊接的相应时间。一般说来,BGA属于5级以上的湿度敏感等级。
湿度敏感等级。等级时间时间1无限制≤30ºC/85% RH2一年≤30ºC/60% RH2a四周≤30ºC/60% RH3168小时≤30ºC/60% RH472小时≤30ºC/60% RH548小时≤30ºC/60% RH5a24小时≤30ºC/60% RH6按标签时间规定≤30ºC/60% RH
如果在元器件储藏于氮气的条件下,那么使用的时间可以相对延长。大约每4-5小时的干燥氮气的作用,可以延长1小时的空气暴露时间。
在装配的过程中我们常常会遇到这样的情况,即元器件的包装被打开后无法在相应的时间内使用完毕,而且暴露的时间超过了表1中规定的时间,那么在下一次使用之前为了使元器件具有良好的可焊性,我们建议对BGA元件进行烘烤。烘烤条件下:温度为125℃,相对相湿度≤60% RH,
烘烤的温度最不要超过125℃,因为过高的温度会造成锡球与元器件连接处金相组织变化,而当这些元器件进入回流焊的阶段时,容易引起锡球与元器件封装处的脱节,造成SMT装配质量问题,我们却会认为是元器件本身的质量问题造成的。但果烘烤的温度过低,则无法起到除湿的作用。在条件允许情况下,我们建议在装配前将元器件烘烤下,有利于消除BGA的内部湿气,并且提高BGA的耐热性,减少元器件进入回流焊受到的热冲击对器件的影响。BGA元器件在烘烤后取出,自然冷却半小时才能进行装配作业。
烘烤时间封装厚度湿度敏感等级烘烤时间≤1.4MM2a 4小时 37小时 49小时 510小时 5a14小时≤2.0MM2a18小时 324小时 331小时 5a37小时≤4.0MM2a48小时 348小时 348小时 348小时 5a48小时
BGA的焊接工艺要求 在BGA的装配过程中,每一个步骤,每一样工具都会对BGA的焊接造成影响。
1.焊膏印刷
焊膏的优劣是影响表面装贴生产的一个重要环节。选择焊膏通常会考虑下几个方面:良好的印刷性好的可焊性好的可焊性低残留物。一般来说,我们采用焊膏的合金成分为含锡63%和含铅37%的低残留物型焊膏。
元器件的引脚间别具匠心越,焊膏的锡粉颗越小,相对来说印刷较发好。但并不是说选择焊膏锡粉颗越小越好,因为从焊接效果来说,锡粉颗粒大的焊膏焊接效果要比锡粉颗粒小的焊膏好。因此,我们在选择时要从各方面因素综合考虑。由于BGA的引脚间较小,丝网模板开孔较小,所以我们采用直径为45M以下的焊膏,以保证获得良好的印刷效果。
焊膏锡粉形状与颗粒直径引脚间距(MM)1.2710.80.650.50.4锡粉形状非球型球型球型球型颗粒直径(um)22-6322-6322-6322-38
印刷的丝网模板一般采用不锈钢材料。由于BGA元器件的引脚间距较小,故而钢板的厚度较薄。一般钢板的厚度为0.12MM-0.15MM。钢板的开口视元器件的情况而定,通常情况下钢板的开口略小于焊盘。
例如:外型尺寸为35MM,引脚间别具匠心为1.0MM的PBGA,焊肋直径为23MIL。我们一般将钢板的开口的大小控制在21MIL.
在印刷时,通常采用不锈钢制的60度金属刮刀。印刷的压力控制有3.5KG-10KG的范围内。压力太大和太小都对印刷不利。印刷的速度控制在10MM/SEC-25MM/SEC之间,元器件的引脚间距愈小,印刷速度愈慢。印刷后的脱离速度一般设置为1MM/SEC之间,如果是 u BGA 或CSP器件脱模速度应更慢大约为0.5MM/SEC。另外,在印刷焊要注意控制操作的环境。工作的场温度控制在25℃左右,温度控制在55%RH左右。印刷后的PCB尽量在半小时以内进入回流焊,防止焊膏在空气中显露过久而影响质量。
2.器件的放置
BGA的准确贴放很大程度上取决于贴片机的精确度,以及镜像识别系统的识别能力。就目前市场上各种品牌的多功能贴片机而言,能够放置BGA的贴片机其贴片的精确度达到0.001MM左右,所以在贴片精度上不会存在问题。只要BGA器件通过镜像识别,就可以准确的安放在印制线路板上。
然而有时通过镜像识别的BGA并非100%的焊球良好的器件,有可能某个焊球的Z方向上略小于其他焊球。为了保证焊接的良好性,我们的通常可以将BGA的器件厚度减去1-2MM,同时便用延里关闭真空系统约400毫秒,使BGA器件在安放时其焊球能够与焊膏充分接触。这样一来就可以减少BGA某个引脚空焊的现象。
不过,对于u BGA和CSP的器件我们不建议采用目述方法,以防止出现焊接不良的焊接现象的产生。
3. 回流焊
回流焊接是BGA装配过程中最难控制的步骤。因此获得较佳的回流风线是得到BGA良好焊接的关键所在。
★ 预热阶段在这一段时间内使PCB均匀受热温,并刺激助焊剂活跃。一般升温的速度不要过快,防止线路弧受热过快而产生较大的变形。我们尽量升温度控制在3℃/SEC以下,较理想的升温速度为2℃/SEC。时间控制在60-90秒之间。
★ 浸润阶段这一阶段助焊剂开始挥发。温度在150℃-180℃之间应保持60-120秒,以便助焊剂能够充分发挥其作用。升温的速度一般在0.3-0.5℃/SEC。
★ 回流阶段这一阶段的温度已经超过焊膏的溶点温度,焊膏溶化成液体,元器件引脚上锡。该阶段中温度在183℃以上的时间应控制在60-90秒之间。如果时间太少或过长都会造成焊接的质量问题。其中温度在210-220℃范围内的时间控制相当关键,一般控制在10-20秒为最佳。
★ 冷却阶段这一阶段焊膏开始凝固,元器件被固定在线路板上。同样的是降温的速度也不能够过快,一般控制在4℃/SEC以下,较理想的降温速度为3℃/SEC。由于过快的降温速度会造成线路板产生冷变形,它会引起BGA焊接的质量问题,特别是BGA外圈引脚的虚焊。
在测量回流焊接的温度曲线时,对于BGA元件其测量点应在BGA引脚与线路板之间。BGA尽量不要用高温胶带,而采用高温焊锡焊接与热电偶相固定,以保证获得较为准确的曲线数据。
总之BGA的焊接是一门十分复杂的工艺,它还受到线路板设计,设备能力等各方面因素的影响,若只顾及某一方面是远远不够的。我们还要在实际的生产过程中不断研究和探索,努力控制影响BGA焊接的各项因素,从而使焊接能达到到最好的效果。
5、有争议的一种缺陷目前尚存在争议的一个问题是关于BGA中空洞的接收标准。空洞问题并不是BGA独有的。在通孔插装及表面贴装及通孔插装组件的焊点通常都可以用目视检查看到空洞,而不用X射线。在BGA中,由于所有的焊点隐藏在封装的下面,只有使用X射线才能检查到这些焊点。当然,用X射线不仅可以检查BGA的焊点,所有的各种各样的焊点都可以检查,使用X射线,空洞很容易就可以检查出来。
那么空洞一定对BGA的可靠性有负面影响吗,7不一定。有些人甚至说空洞对于可靠性是有好处的。 IPC-7095标准"实现BGA的设计和组装过程"详述了实现BGA和的设计及组装技术。IPC-7095委员会认为有些尺寸非常小,不能完全消除的空洞可能对于可靠性是有好处的,但是多大的尺寸应该有一个界定的标准。
5.1空洞的位置及形成原因
在BGA的焊点检查中在什么位置能发现空洞呢? BGA的焊球可以分为三个层,一个是组件层(靠近BGA组件的基板),一个是焊盘层(靠近PCB的基板),再有一个就是焊球的中间层。根据不同的情况,空洞可以发生在这三个层中的任何一个层。
空洞是什么时候出现的呢?BGA焊球中可能本身在焊接前就带有空洞,这样在再流焊过程完成后就形成了空洞。这可能是由于焊球制作工艺中就引入了空洞,或是PCB表面涂覆的焊膏材料的问题导致的。另外电路板的设计也是形成空洞的一个主要原因。例如,把过孔设计在焊盘的下面,在焊接的过程中,外界的空气通过过孔进入熔溶状态的焊球,焊接完成冷却后焊球中就会留下空洞。
焊盘层中发生的空洞可能是由于焊盘上面印刷的焊膏中的助焊剂在再流焊接过程中挥发,气体从熔溶的焊料中逸出,冷却后就形成了空洞。焊盘的镀层不好或焊盘表面有污染都可能是在焊盘层出现空洞的原因。
通常发现空洞机率最多的位置是在组件层,也就是焊球的中央到BGA基板之间的部分。这有可能是因为PCB上面BGA的焊盘在再流焊接的过程中,存在有空气气泡和挥发的助焊剂气体,当BGA的共晶焊球与所施加的焊膏在再流焊过程中熔为一体时形成空洞。如果再流温度曲线在再流区时间不够长,空气气泡和助焊剂中挥发的气体来不及逸出,熔溶的焊料已经进入冷却区变为固态,便形成了空洞。所以,再流温度曲线是形成空洞的种原因。共晶焊料63Sn/37Pb的BGA最易出现空洞, 而成分为10Sn/90Pb的非共晶高熔点焊球的BGA,熔点为302℃,一般基本上没有空洞,这是因为在焊膏熔化的再流焊接过程中BGA上的焊球不熔化。
5.2空洞的接收标准
空洞中的气体存在可能会在热循环过程中产生收缩和膨胀的应力作用空洞存在的地方便会成为应力集中点,并有可能成为产生应力裂纹的根本原因。
IPC-7095中规定空洞的接收/拒收标准主要考虑两点:就是空洞的位置及尺寸。空洞不论是存在什么位置,是在焊料球中间或是在焊盘层或组件层,视空洞尺寸及数量不同都会造成质量和可靠性的影响。焊球内部允许有小尺寸的焊球存在。空洞所占空间与焊球空间的比例可以按如下方法计算:例如空洞的直径是焊球直径的50%,那么空洞所占的面积是焊球的面积的25%。lPC标准规定的接收标准为:焊盘层的空洞不能大于10%的焊球面积,也即空洞的直径不能超过30%的焊球直径。当焊盘层空洞的面积超过焊球面积的25%时,就视为一种缺陷,这时空洞的存在会对焊点的机械或电的可靠性造成隐患。在焊盘层空洞的面积在1O%~25%的焊球面积时,应着力改进工艺,消除或减少空洞。还有详细待续http://www.huiliuhan.cn/show-212-616.html